83 research outputs found

    On the Real-Time Performance, Robustness and Accuracy of Medical Image Non-Rigid Registration

    Get PDF
    Three critical issues about medical image non-rigid registration are performance, robustness and accuracy. A registration method, which is capable of responding timely with an accurate alignment, robust against the variation of the image intensity and the missing data, is desirable for its clinical use. This work addresses all three of these issues. Unacceptable execution time of Non-rigid registration (NRR) often presents a major obstacle to its routine clinical use. We present a hybrid data partitioning method to parallelize a NRR method on a cooperative architecture, which enables us to get closer to the goal: accelerating using architecture rather than designing a parallel algorithm from scratch. to further accelerate the performance for the GPU part, a GPU optimization tool is provided to automatically optimize GPU execution configuration.;Missing data and variation of the intensity are two severe challenges for the robustness of the registration method. A novel point-based NRR method is presented to resolve mapping function (deformation field) with the point correspondence missing. The novelty of this method lies in incorporating a finite element biomechanical model into an Expectation and Maximization (EM) framework to resolve the correspondence and mapping function simultaneously. This method is extended to deal with the deformation induced by tumor resection, which imposes another challenge, i.e. incomplete intra-operative MRI. The registration is formulated as a three variable (Correspondence, Deformation Field, and Resection Region) functional minimization problem and resolved by a Nested Expectation and Maximization framework. The experimental results show the effectiveness of this method in correcting the deformation in the vicinity of the tumor. to deal with the variation of the intensity, two different methods are developed depending on the specific application. For the mono-modality registration on delayed enhanced cardiac MRI and cine MRI, a hybrid registration method is designed by unifying both intensity- and feature point-based metrics into one cost function. The experiment on the moving propagation of suspicious myocardial infarction shows effectiveness of this hybrid method. For the multi-modality registration on MRI and CT, a Mutual Information (MI)-based NRR is developed by modeling the underlying deformation as a Free-Form Deformation (FFD). MI is sensitive to the variation of the intensity due to equidistant bins. We overcome this disadvantage by designing a Top-to-Down K-means clustering method to naturally group similar intensities into one bin. The experiment shows this method can increase the accuracy of the MI-based registration.;In image registration, a finite element biomechanical model is usually employed to simulate the underlying movement of the soft tissue. We develop a multi-tissue mesh generation method to build a heterogeneous biomechanical model to realistically simulate the underlying movement of the brain. We focus on the following four critical mesh properties: tissue-dependent resolution, fidelity to tissue boundaries, smoothness of mesh surfaces, and element quality. Each mesh property can be controlled on a tissue level. The experiments on comparing the homogeneous model with the heterogeneous model demonstrate the effectiveness of the heterogeneous model in improving the registration accuracy

    Association of BMI with erectile dysfunction: A cross-sectional study of men from an andrology clinic

    Get PDF
    Abnormal body mass index (BMI) is associated with an increased risk of erectile dysfunction (ED). However, the relationship between different BMI categories and the levels of ED severity remains unclear. In the current study, 878 men from the andrology clinic in Central China were recruited. Erectile function was assessed by the International Index of Erectile Function (IIEF) scores. Questionnaires included questions about demographic characteristics (age, height, weight, educational status), lifestyle habits (drinking, smoking, sleep time), and medical history. Logistic regression was used to examine the association between ED risk and BMI. The incidence of ED was 53.1%. BMI was significantly higher in men from the ED group than in those from the non-ED group (P = 0.01). Compared with the normal weight group, obese men had a higher risk of ED (OR = 1.97, 95% CI = 1.25-3.14, P = 0.004), even after adjustment for potential confounders (OR = 1.78, 95% CI = 1.10-2.90, P = 0.02). Moreover, the positive correlation between obesity and moderate/severe ED severity was confirmed by logistic regression analysis (moderate/severe ED, OR = 2.71, 95% CI = 1.44-5.04, P = 0.002), even after adjusting for potential confounders (OR = 2.51 95% CI = 1.24-5.09, P = 0.01). Collectively, our findings indicate a positive correlation between obesity and the risk of moderate/severe ED. Clinicians could pay more attention to moderate/severe ED patients to maintain a healthy body weight to improve erectile function

    Pirt, a Phosphoinositide-Binding Protein, Functions as a Regulatory Subunit of TRPV1

    Get PDF
    SummaryTransient receptor potential vanilloid 1 (TRPV1) is a molecular sensor of noxious heat and capsaicin. Its channel activity can be modulated by several mechanisms. Here we identify a membrane protein, Pirt, as a regulator of TRPV1. Pirt is expressed in most nociceptive neurons in the dorsal root ganglia (DRG) including TRPV1-positive cells. Pirt null mice show impaired responsiveness to noxious heat and capsaicin. Noxious heat- and capsaicin-sensitive currents in Pirt-deficient DRG neurons are significantly attenuated. Heterologous expression of Pirt strongly enhances TRPV1-mediated currents. Furthermore, the C terminus of Pirt binds to TRPV1 and several phosphoinositides, including phosphatidylinositol-4,5-bisphosphate (PIP2), and can potentiate TRPV1. The PIP2 binding is dependent on the cluster of basic residues in the Pirt C terminus and is crucial for Pirt regulation of TRPV1. Importantly, the enhancement of TRPV1 by PIP2 requires Pirt. Therefore, Pirt is a key component of the TRPV1 complex and positively regulates TRPV1 activity

    Comparison of Physics-Based Deformable Registration Methods for Image-Guided Neurosurgery

    Get PDF
    This paper compares three finite element-based methods used in a physics-based non-rigid registration approach and reports on the progress made over the last 15 years. Large brain shifts caused by brain tumor removal affect registration accuracy by creating point and element outliers. A combination of approximation- and geometry-based point and element outlier rejection improves the rigid registration error by 2.5 mm and meets the real-time constraints (4 min). In addition, the paper raises several questions and presents two open problems for the robust estimation and improvement of registration error in the presence of outliers due to sparse, noisy, and incomplete data. It concludes with preliminary results on leveraging Quantum Computing, a promising new technology for computationally intensive problems like Feature Detection and Block Matching in addition to finite element solver; all three account for 75% of computing time in deformable registration

    Electrolyte Salts and Additives Regulation Enables High Performance Aqueous Zinc Ion Batteries: A Mini Review

    Get PDF
    Aqueous zinc ion batteries (ZIBs) are regarded as one of the most ideally suited candidates for large-scale energy storage applications owning to their obvious advantages, that is, low cost, high safety, high ionic conductivity, abundant raw material resources, and eco-friendliness. Much effort has been devoted to the exploration of cathode materials design, cathode storage mechanisms, anode protection as well as failure mechanisms, while inadequate attentions are paid on the performance enhancement through modifying the electrolyte salts and additives. Herein, to fulfill a comprehensive aqueous ZIBs research database, a range of recently published electrolyte salts and additives research is reviewed and discussed. Furthermore, the remaining challenges and future directions of electrolytes in aqueous ZIBs are also suggested, which can provide insights to push ZIBs’ commercialization

    Adaptive Physics-Based Non-Rigid Registration for Immersive Image-Guided Neuronavigation Systems

    Get PDF
    Objective: In image-guided neurosurgery, co-registered preoperative anatomical, functional, and diffusion tensor imaging can be used to facilitate a safe resection of brain tumors in eloquent areas of the brain. However, the brain deforms during surgery, particularly in the presence of tumor resection. Non-Rigid Registration (NRR) of the preoperative image data can be used to create a registered image that captures the deformation in the intraoperative image while maintaining the quality of the preoperative image. Using clinical data, this paper reports the results of a comparison of the accuracy and performance among several non-rigid registration methods for handling brain deformation. A new adaptive method that automatically removes mesh elements in the area of the resected tumor, thereby handling deformation in the presence of resection is presented. To improve the user experience, we also present a new way of using mixed reality with ultrasound, MRI, and CT. Materials and methods: This study focuses on 30 glioma surgeries performed at two different hospitals, many of which involved the resection of significant tumor volumes. An Adaptive Physics-Based Non-Rigid Registration method (A-PBNRR) registers preoperative and intraoperative MRI for each patient. The results are compared with three other readily available registration methods: a rigid registration implemented in 3D Slicer v4.4.0; a B-Spline non-rigid registration implemented in 3D Slicer v4.4.0; and PBNRR implemented in ITKv4.7.0, upon which A-PBNRR was based. Three measures were employed to facilitate a comprehensive evaluation of the registration accuracy: (i) visual assessment, (ii) a Hausdorff Distance-based metric, and (iii) a landmark-based approach using anatomical points identified by a neurosurgeon. Results: The A-PBNRR using multi-tissue mesh adaptation improved the accuracy of deformable registration by more than five times compared to rigid and traditional physics based non-rigid registration, and four times compared to B-Spline interpolation methods which are part of ITK and 3D Slicer. Performance analysis showed that A-PBNRR could be applied, on average, in \u3c2 min, achieving desirable speed for use in a clinical setting. Conclusions: The A-PBNRR method performed significantly better than other readily available registration methods at modeling deformation in the presence of resection. Both the registration accuracy and performance proved sufficient to be of clinical value in the operating room. A-PBNRR, coupled with the mixed reality system, presents a powerful and affordable solution compared to current neuronavigation systems

    Toll-Like Receptor 4 Reduces Oxidative Injury via Glutathione Activity in Sheep

    Get PDF
    Toll-like receptor 4 (TLR4) is an important sensor of Gram-negative bacteria and can trigger activation of the innate immune system. Increased activation of TLR4 can lead to the induction of oxidative stress. Herein, the pathway whereby TLR4 affects antioxidant activity was studied. In TLR4-overexpressing sheep, TLR4 expression was found to be related to the integration copy number when monocytes were challenged with lipopolysaccharide (LPS). Consequently, production of malondialdehyde (MDA) was increased, which could increase the activation of prooxidative stress enzymes. Meanwhile, activation of an antioxidative enzyme, glutathione peroxidase (GSH-Px), was increased. Real-time PCR showed that expression of activating protein-1 (AP-1) and the antioxidative-related genes was increased. By contrast, the expression levels of superoxide dismutase 1 (SOD1) and catalase (CAT) were reduced. In transgenic sheep, glutathione (GSH) levels were dramatically reduced. Furthermore, transgenic sheep were intradermally injected with LPS in each ear. The amounts of inflammatory infiltrates were correlated with the number of TLR4 copies that were integrated in the genome. Additionally, the translation of γ-glutamylcysteine synthetase (γ-GCS) was increased. Our findings indicated that overexpression of TLR4 in sheep could ameliorate oxidative injury through GSH secretion that was induced by LPS stimulation. Furthermore, TLR4 promoted γ-GCS translation through the AP-1 pathway, which was essential for GSH synthesis

    Advancing Intra-operative Precision: Dynamic Data-Driven Non-Rigid Registration for Enhanced Brain Tumor Resection in Image-Guided Neurosurgery

    Full text link
    During neurosurgery, medical images of the brain are used to locate tumors and critical structures, but brain tissue shifts make pre-operative images unreliable for accurate removal of tumors. Intra-operative imaging can track these deformations but is not a substitute for pre-operative data. To address this, we use Dynamic Data-Driven Non-Rigid Registration (NRR), a complex and time-consuming image processing operation that adjusts the pre-operative image data to account for intra-operative brain shift. Our review explores a specific NRR method for registering brain MRI during image-guided neurosurgery and examines various strategies for improving the accuracy and speed of the NRR method. We demonstrate that our implementation enables NRR results to be delivered within clinical time constraints while leveraging Distributed Computing and Machine Learning to enhance registration accuracy by identifying optimal parameters for the NRR method. Additionally, we highlight challenges associated with its use in the operating room

    PhDHS Is Involved in Chloroplast Development in Petunia

    Get PDF
    Deoxyhypusine synthase (DHS) is encoded by a nuclear gene and is the key enzyme involved in the post-translational activation of the eukaryotic translation initiation factor eIF5A. DHS plays important roles in plant growth and development. To gain a better understanding of DHS, the petunia (Petunia hybrida) PhDHS gene was isolated, and the role of PhDHS in plant growth was analyzed. PhDHS protein was localized to the nucleus and cytoplasm. Virus-mediated PhDHS silencing caused a sectored chlorotic leaf phenotype. Chlorophyll levels and photosystem II activity were reduced, and chloroplast development was abnormal in PhDHS-silenced leaves. In addition, PhDHS silencing resulted in extended leaf longevity and thick leaves. A proteome assay revealed that 308 proteins are upregulated and 266 proteins are downregulated in PhDHS-silenced plants compared with control, among the latter, 21 proteins of photosystem I and photosystem II and 12 thylakoid (thylakoid lumen and thylakoid membrane) proteins. In addition, the mRNA level of PheIF5A-1 significantly decreased in PhDHS-silenced plants, while that of another three PheIF5As were not significantly affected in PhDHS-silenced plants. Thus, silencing of PhDHS affects photosynthesis presumably as an indirect effect due to reduced expression of PheIF5A-1 in petunia.Significance:PhDHS-silenced plants develop yellow leaves and exhibit a reduced level of photosynthetic pigment in mesophyll cells. In addition, arrested development of chloroplasts is observed in the yellow leaves
    • …
    corecore